machine-learning-1-practical

machine-learning-1-practical
In [4]:
from IPython.display import Image
from IPython.core.display import HTML 
from IPython.display import IFrame
In [21]:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
In [22]:
pwd
Out[22]:
'F:\\python for data science and machine learning\\machine-learning-1'
In [41]:
os.listdir('F:/python for data science and machine learning/machine-learning-1')
Out[41]:
['.ipynb_checkpoints',
 'death .csv',
 'machine-learning-1-practical.ipynb',
 'screenshots']
In [48]:
data = pd.read_csv('death .csv')   # attemtion death ke baad file me space tha phir csv isliye read nhi ho rhi thi
data.head()
Out[48]:
County FIPS Met Objective of 45.5? (1) Age-Adjusted Death Rate Lower 95% Confidence Interval for Death Rate Upper 95% Confidence Interval for Death Rate Average Deaths per Year Recent Trend (2) Recent 5-Year Trend (2) in Death Rates Lower 95% Confidence Interval for Trend Upper 95% Confidence Interval for Trend
0 United States 0 No 46 45.9 46.1 157,376 falling -2.4 -2.6 -2.2
1 Perry County, Kentucky 21193 No 125.6 108.9 144.2 43 stable -0.6 -2.7 1.6
2 Powell County, Kentucky 21197 No 125.3 100.2 155.1 18 stable 1.7 0 3.4
3 North Slope Borough, Alaska 2185 No 124.9 73 194.7 5 ** ** ** **
4 Owsley County, Kentucky 21189 No 118.5 83.1 165.5 8 stable 2.2 -0.4 4.8
In [ ]:
 
In [ ]:
 

Comments

Popular posts from this blog

bookmarks

problem from contest

numpy(Python for data science)

Rural Development